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Abstract: In the field of data mining, clustering has shown to be an important technique. Numerous
clustering methods have been devised and put into practice, and most of them locate high-quality
or optimum clustering outcomes in the field of computer science, data science, statistics, pattern
recognition, artificial intelligence, and machine learning. This research provides a modern, thorough
review of both classic and cutting-edge clustering methods. The taxonomy of clustering is presented
in this review from an applied angle and the compression of some hierarchical and partitional
clustering algorithms with various parameters. We also discuss the open challenges in clustering
such as computational complexity, refinement of clusters, speed of convergence, data dimensionality,
effectiveness and scalability, data object representation, evaluation measures, data streams, and
knowledge extraction; scientists and professionals alike will be able to use it as a benchmark as they
strive to advance the state-of-the-art in clustering techniques.

Keywords: clustering algorithms; taxonomy of clustering algorithms; challenges in clustering algorithms

1. Introduction

Data can be categorized into numerous groups or clusters using the similarity of the
data points’ traits and qualities in a process known as clustering [1,2]. Numerous data
clustering strategies have been developed and used in recent years to address various data
clustering issues [3,4]. Normally partitional and hierarchical are the two main categories
in cluster analysis approaches [5]. However, the approaches in these techniques proved
incredibly effective and efficient, these methods typically rely on the availability of infor-
mation on the precise dataset for every amount of clusters that need to be clustered and
examined in advance [6]. Additionally, while working with an actual dataset, it is obvious
to neither anticipate nor know in advance how many spontaneously existing sets there will
be in the data entities.

Thus, to overcome such constraints, the idea of automatic data grouping techniques
is presented. Any clustering method that automatically calculates the number of clusters
without a previous understanding of the dataset’s structures and qualities is referred to as
using automatic clustering methods [7,8].

Many of the proposed clustering algorithms discussed in the literature and some
of them are encouraged by nature, in this paper we present a review of traditional and
newly offered clustering methods applied in various fields. In, the author researched the
datasets occurring in statistics, computer science and machine learning. The researchers
in [9,10] worked on the three V’s characteristics of big data which are defined as volume,
variety, and velocity which are then used in different kinds of clustering algorithms to
discover. The authors in [11] presented NoPFS, a machine learning I/O middleware that
eliminates the I/O bottleneck in a scalable, versatile, and user-friendly fashion. In order to
take advantage of the speed and efficiency of node-local or near-node storage, the author
of [12] proposed High-Velocity AI Cache (HVAC), a distributed read-cache layer. The
researchers in [13] carried out brief research of the available clustering algorithms and
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carried out numerous tests to identify the top clustering method for big data analysis. The
authors in [14] explored data mining clustering strategies, focusing on object attribute type,
scalability for huge datasets, processing high dimensional data, and identifying irregularly
formed clusters. The focus of the work in [15–17] was on categorizing and summing
up parallel clustering techniques. The author talked about the architecture of various
parallel clustering algorithms. The writer of [15] offered a taxonomy of current clustering
methods, discussing the various similarity measurements and evaluation standards for
each algorithm.

Researchers in [18] conducted a comparison of the various clustering methods for
both categorical and mixed datasets, and observed that for a huge dataset of any kind
there is no clustering technique that can deal properly. The author of [19] observed many
clustering algorithms that may be used with gene expression data in order to find and
offer information on the best clustering approach that would guarantee stability and a high
degree of accuracy in its analysis. The writer of [1] defined popular clustering approaches
and discussed important problems and difficulties in developing clustering algorithms.
The authors in [20,21] highlighted cutting-edge methods for non-numeric restrictions and
big data sets of patterns.

Additionally, it can be difficult for applied researchers to discover systematic infor-
mation about the subject’s study growth [22]. As a result, a review of the previously
conducted studies on both traditional and current clustering methods and their taxonomy
is necessary to be carried out. Moreover, machine learning algorithms that are widely used
in high performance and scientific domains are discussed in partitional and hierarchical
clustering algorithms.

Thus, key questions for this review have been formulated as below:

1. What are the numerous previously conducted studies on clustering approaches and
techniques?

2. How can we compare both algorithms concerning complexity and various other
parameters?

3. What are the other possible issues in clustering that still needs to be addressed?

The main contribution of this review is as follows:
A taxonomy of clustering algorithms and their brief concepts are discussed, as well

as the compression of both the categories of an algorithm with various parameters. In
addition, this study describes some of the most pressing questions that have arisen recently
in the study of clustering concerns.

2. Taxonomy of Clustering Algorithms

There are two broad categories in clustering algorithms: the first is a partitional clustering
algorithm and the second is a hierarchical clustering algorithm [10,15,16,18,22–26]. Agglomera-
tive and divisive methods are further subdivisions of a hierarchical clustering algorithm.
The hard or crisp clustering method, the fuzzy method, and the mixture method are
three subcategories of the partitional category. There are seven main groups under the
hard or crisp: search-based methods, graph-theoretic methods, density-based methods,
model-based methods, sub-space methods, miscellaneous methods, and the square error as
displayed in Figure 1.
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2.1. Hierarchical Clustering Algorithms

Hierarchical clustering algorithms are a type of clustering algorithm where data items
will be divided into sections in a hierarchical form [27]. To create a dendrogram that shows
the formulated cluster’s hierarchical structure, in a top-down or bottom-up way clusters
are created iteratively [15]. This clustering technique enables data exploration at various
granularity levels [15]. One is the divisive method where the top-down strategy is followed,
and another is an agglomerative method where the bottom-up approach is followed. The
process agglomerative technique follows clusters which are formed from identical items
by properly combining them repeatedly into bigger clusters to establish the hierarchy’s
various levels. This process continues until the full object is transformed into a particular
cluster or the stopping criteria is met. The opposite is true when using a polarizing strategy.

Iteratively, the cluster comprising all the objects is dispersed until either the halting
requirement is satisfied, or each object creates its own cluster. The cluster element’s
closeness or dissimilarity is used to determine whether to merge or split the data.

The distance among the points of subgroups is calculated from the distance of individ-
ual points, hierarchy clustering allows for the merging or splitting of subsets of a point. The
linkage metric, which measures proximity, is used to ascertain this. There are three kinds of
linkages: one of them is single linkage, the second one is average connection and the last is
complete linkage which is usually used in hierarchical clustering [15,28–31]. The algorithm
for hierarchical clustering utilizes n*n the linkage metrics utilized for the clustering are
created in connectivity matrix form. Finding the similarities between each pair of data
points allows for the building of the similarity matrix. When deciding on a linking criterion,
it is common practice to measure the pairwise distance between each cluster. Using the
measure of similarity, we may determine the separation between the groups of clusters. It
is also utilized to answer the question of how the clusters themselves take form.

2.1.1. Agglomerative Clustering

In unsupervised machine learning, hierarchical, agglomerative clustering is a signifi-
cant and well-established approach. Agglomerative clustering methods begin by dividing
the data set into singleton nodes and gradually combining the two currently closest nodes
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into a single node until only one node is left, which contains the whole data set. This
process serves as a common description for several clustering systems, but they vary in
how the measure of inter-cluster dissimilarity is updated after each step [32]. The objective
function’s optimal value serves as the criterion for selecting the pair of clusters to merge at
each phase. Instead of binary data, this clustering algorithm is best suited for quantitative
variables. The research of [33] devised a non-parametric hierarchy, with a conventional clos-
est neighbor approach, an agglomerative clustering method determines a sample point’s
mutual neighborhood value (MNV) and mutual nearest neighbors (MNN). Agglomerative
hierarchical clustering is further subdivided into the following categories.

• Single-linkage clustering: this type of clustering is also known as the minimal, connect-
edness, or nearest-neighbor approach. The closest distance between any two cluster
members of any cluster is measured. By calculating the closest distance between a sin-
gle element pair, it calculates the similarity between two clusters. The chaining effect
of the single linkage clustering has the propensity to produce extended clusters [34].

• Average linkage clustering: the minimum-variance linkage is another name for average
linkage clustering [15,20]. It determines the average or median distance between each
cluster of data points [34].

• Complete linkage: the complete linkage, often referred to as the maximum, diameter, or
farthest neighbor method, measures the longest distance between any member of one
cluster and any member of the other cluster in order to calculate the distance between
two clusters. Compared to single-linkage clustering, the complete-linkage algorithm
clusters are smaller and more closely linked [20]. The three-proximity metrics that were
described earlier take into account all the points in a pair of clusters when calculating
the inter-cluster distances. They are thought of as graph techniques [10,35].

SLINK is an implementation of the single linkage hierarchical clustering technique [36];
the authors of [37,38] developed CLINK, which is an implementation of the complete
linkage clustering algorithm and are examples of the average link clustering algorithm.
Other geometrical techniques were created using the center point as a proximity measure
based on the same concept. These comprised the minimum variance linkage metrics,
centroid linkage, and median linkage metrics [39–41]. While similarity metrics capture
intra-cluster connectedness, a distance-based proximity measure captures inter-cluster
closeness. The adjustable amount of granularity and any similarity metric can be handled
by the hierarchical clustering techniques [34].

2.1.2. Divisive Hierarchical Clustering

The agglomerative clustering process breaks each cluster into smaller groups starting
with each item in a single cluster and continuing until the necessary number of clusters
is reached and it is reversed by the process known as “divisive hierarchical clustering.”
The divisive approach, in contrast to the agglomerative clustering method, employs the
top-down method, where the data objects are initially thought of as a fused cluster that
gradually separates depending on when the cluster number is collected [42–44]. In order
to divide a cluster into two subsets that each contain one or more components, the usual
procedure takes into account all potential bipartitions. Even though it is common practice
to examine all potential bipartitions in which each cluster is capable of being divided into
two smaller clusters it is clear that the entire enumeration procedure provides a universal
optimum but is quite costly in terms of computation cost.

Diverse divisive clustering methods that do not take into account all bipartitions have
been researched. For instance, [45] compared the conventional K-Means or agglomerative
method, and a bisecting K-Means divisive clustering method was presented. Another
study [46] combined it with the divisive clustering approach to investigate a unique
clustering technique dubbed “reference point-based dissimilarity measure” (DIVFRP) for
the aim of dataset division.

The author in [47] proposed an improved particle optimizer (IDPSO) to identify
the most convenient optimal partition hyperplane for dividing the chosen clusters into
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two parts. This dividing method is a practical and effective component of the divisive
hierarchical approach. The authors in [48,49] investigated the iterative division technique
using the average dissimilarity between an object and a set of objects. A different strategy,
however, focuses on optimization criteria that include partitioning or bi-partitioning and
uses a dissimilarity matrix as input [50,51]. There are two main categories of divisive
clustering: monothetic and polythetic approaches. When a set of logical qualities are both
required and sufficient for inclusion in a cluster, we refer to that cluster as monothetic [52].

Monothetic divisive clusters are formed by dividing items based on a single variable
in each breaking, such as whether or not they have a certain object value. The “associ-
ation analysis approach” has a version called monothetic; the author of [53] developed
it specifically for binary information. Several researchers have used monothetic clusters
to solve problems. For instance, the authors of [54] provided an approach that gives an
arrangement of things and a monothetic description of each cluster. Similarly, the author
in [55] developed three monothetic techniques and principal component analysis (PCA) for
inter-valued data. The initial PCA method utilized inter-valued data. The author’s second
approach relied on symbolic data, while their third and final algorithm was derived from
the terminal values of intervals. In the end, the author tested their model using real-world
data to ensure its accuracy.

Contrarily, polythetic divisive clustering is a method that uses all parameters con-
currently by calculating distances or resemblance values. Rather than relying on the
relative positions of variables, it relies solely on distance values, which in turn indicate the
dissimilarity between all of the variables simultaneously [56].

2.2. Partitional Clustering Algorithm

Data is arranged into nested groups using a partitional clustering algorithm, but there
is no hierarchical structure [1]. The authors in [29] claimed that applications requiring big
data sets for which the creation of a dendrogram is computationally prohibitive can handle
clustering problems using the partitioning method. They work by creating data clusters
to recreate the natural groupings already present in the dataset. The optimization of a
criterion function is used to iteratively divide the dataset of n items into a preset k number
of unique subsets [57]. In [58], the author presented a new approach called k-SCC to get the
best possible value for k when clustering categorical data. The squared error criteria are the
most commonly used criteria functions in partitional clustering algorithms. The primary
objective is to identify the segment that minimizes the square error for a given quantity
of clusters. Problems in the patterns’ deviations from the cluster centers are depicted by
the error when the patterns are seen as a group of k-numbered spherical shape clusters.
Using an information theoretic dissimilarity measure and a kernel-based technique for
representation of cluster means for categorical items, the authors of [15] sought to build an
unique extension of the k-means method for clustering categorical data.

The initial dataset partition serves as the basis for the partitional clustering algorithm,
which allocates the data items in clusters iteratively in such a way that it can minimize
the square error. The initial partition can be determined by selecting at random from the
pattern matrix a set of K seed points that are widely spaced from one another. The authors
of [15] emphasized the need of choosing starting points from preexisting data items that
are appropriately separated from each other, appropriate seed points could be discovered.
The square error tends to decrease as the number of clusters rises, and thus minimizing is
only possible for a given number of clusters.

Several techniques for partition clustering employ the square error criterion function
to generate K-numbered clusters that are as small and different as feasible. It is more
energy efficient than alternative criteria functions [20]. Because square-error-based tech-
niques can tend to the local optimal solution, particularly if the beginning points are not
widely separated, potentially different divisions can produce various clusters as an out-
come [18]. Partitional clustering is subdivided into three main categories which include
fuzzy clustering, hard/crisp clustering and the last is mixture resolving.
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2.2.1. Fuzzy Clustering

A clustering technique called fuzzy clustering was created by [59] and is based on
the fuzzy set. Each pattern concurrently belongs to more than one of the fuzzy sets that
form the clusters. Allocating data points to more than two clusters with varying degrees of
participation in the mirrored clusters yields a non-binary relationship [22]. By allowing
clusters to overlap in this manner, the fuzzy overlap is demonstrated. Fuzzy overlap counts
the number of data points with meaningful membership in the overlapping clusters while
reflecting the fuzziness of the cluster borders. This clustering method is useful for groupings
of data points whose boundaries are fuzzy or poorly differentiated [15,49]. Information on
a point’s level of affiliation in a cluster might shed light on the item’s inherent relationship
to those clusters.

2.2.2. Hard/Crisp Clustering

In a hard or crisp clustering procedure, each data point refers to an exactly particular
cluster. Miscellaneous clustering, density-based clustering, graph-theoretic clustering,
model-based clustering and subspace clustering are some of the clustering techniques
included in this category.

• Graph-theoretic clustering:

A data structure known as a “graph” is composed of nodes and the edges that connect
them. When conducting data analysis, a graph can be used to list significant, pertinent
features and model relationships between features of data items. Graphs are used to
represent clusters in graph-theoretic clustering [15].

The representation of the data objects consists of nodes connected by edges. The edges
show how close together pairs of data points are [10]. Separating cells into distinct clusters
reduces the number of edges among groups while increasing the number of edges inside
them [15]. Consistent edges are those whose clustering length (weight) is significantly
greater than the average of the nearby edges. Points are classified into groups based on the
graph structure, which results in result clusters with strong intra-connectivity/homogeneity
and minimal inter-connectivity/homogeneity among the produced clusters. Although
useful, representing clusters on graphs is not robust enough to handle outliers.

Using particular graph topological characteristics, this clustering method produces
bunches from a collection of data items. Similar to the search for the most connected graph
subgraphs, the problem of single linkage hierarchical clustering is a graph-based one. Com-
parable to total-linkage, hierarchical clustering is the search for the most comprehensive
subgraphs in a given network [20].

• Subspace clustering:

Subspace clustering aims to discover a low-dimensional subspace that best fits each
cluster of points in the data while clustering the data into numerous subspaces at the
same time [60]. Instead of explaining a big dimensional dataset as a whole, it is frequently
preferable to do so using the subspaces in which it exists [61]. In such a large dimensional
dataset, the subspace clustering method enables the discovery of hidden knowledge.
Subspace clustering makes it simple to spot clusters that exist in several overlapping
subspaces. Utilizing feature selection, subspace clustering eliminates unnecessary and
redundant dimensions, leaving only the pertinent dimension for the clustering algorithm
to employ when locating clusters in the dataset. Using the top-down and bottom-up
clustering algorithm search techniques, the subspace clustering algorithm is divided into
two subcategories. The bottom-up subspace method makes use of the downward closure
property of density to minimize search space using an APRORI-style methodology. Top-
down subspace clustering starts by finding an estimation of the clusters throughout the
full-length feature set, where each dimension is entitled to equal weight.

• Density-based clustering:



Appl. Sci. 2023, 13, 3529 7 of 18

In pattern space, clusters are regarded as dense regions that are divided by less dense
parts. When compared to the items in the sparse regions dividing the clusters, which are
referred to as noise and outliers, the high-density regions, or modes, are connected with
a cluster core [62]. The closest center clusters are then created using the data points. To
determine the pattern space modes, the pattern space is divided into non-overlapping
sections and a histogram is created. The valleys of the histogram’s structure serve as the
boundaries between the clusters, while the regions with high-frequency counts represent
potential modes. The main problem with a histogram is that it requires too large of a
pattern space to distinguish the portions required for determining the density function [20].

Furthermore, because they cannot be accurately described, small clusters are typically
exceedingly noisy. The diverse qualities of the member patterns, however, prevent huge
clusters from accurately defining the cluster properties.

Finding the exact values for the histogram’s peak and the valley is another chal-
lenge [20]. Engineering has made substantial use of this clustering technique, primarily in
remote sensing applications [63]. In some other instances, clusters are created depending on
the number of data points present in a certain area. Data points are added to the cluster up
until a predetermined threshold is reached for the neighborhood’s density. In this scenario,
a cluster within a specific radius must have a certain minimum number of objects that
fall inside the provided criterion. Building of the cluster this makes it possible to create
clusters with any shape. Naturally, noisy or outlier data points are removed. For example,
density-based spatial clustering of applications with noise (DBSCAN) and optimal points
for identifying cluster structure (OPTICS) are two methods for determining a clustering’s
organizational framework (DENCLUE) DBSCAN’s cluster model is well-defined and just
somewhat complicated [62]. OPTICS fixed the problem with DBSCAN’s range parameter
selection, producing a hierarchical outcome similar to linkage clustering [62]. Moreover,
the HDBSCAN clustering algorithm is a successor of the DBSCAN algorithm; it shares
all the advantages of the DBSCAN algorithm and eliminates the problem of clusters of
varying densities, which is often referred as a strength of the algorithm. However, it still
needs to select a minimum cluster size which is said to be its weakness [64].

According to reports, the model’s complexity increased from O(n2) to O(n log n) when
the spatial index was used to define a data point’s neighborhood [18].

• Model-based clustering:

Model-based clustering is a method for maximizing the usefulness of a selected model
with the information at hand. Since clusters are formed according to the data set provided,
the total nodes may be estimated rapidly, facilitating the discovery of outliers. Clustering
using models utilizes a hybrid model to depict the data, with the model’s components
standing in for the various clusters. Cluster composition models can be generated in one
of two ways, e.g., methods such as the mixing likelihood and the categorization probable.
Parameter estimates for a model are often determined using the Maximum Likelihood
Estimation (MLE) criteria [65], or with the Bayesian Information Criterion (BIC) [66]. The
BIC may also use distance to decide which of two clusters to place a data point in [65].

• Search-based clustering:

Automatic data clustering techniques, or search-based clustering algorithms, are
metaheuristic methods inspired by nature. The architecture and quantity of clusters in
such a dataset are determined without prior knowledge of the characteristics or elements
in the array [7]. They appear as a response to the requirement to supply the conventional
clustering algorithms, a priori data [67]. Based on the quantity of clusters produced. The
necessity of providing this crucial data typically results in some additional computing
demands or loads on the pertinent conventional clustering techniques [7,8]. A fundamental
issue in cluster analysis known as the “automated clustering problem” is finding the best
estimate of the number of clusters [68]. Legitimate data clustering analysis using high-
density and dimensional datasets exacerbates this difficulty. It is tough to pick sufficient
cluster numbers when there is a lack of previous domain knowledge, particularly in datasets



Appl. Sci. 2023, 13, 3529 8 of 18

with several dimensions and a broad range of cluster size, shape, density, and occasionally
overlap. This was before the number of clusters needed for a data clustering technique is
not straightforward since figuring out the appropriate number of clusters needed for such
huge datasets is a very tricky subject.

For real-world data sets with high density and dimensionality, automatic cluster-
ing algorithms are developed, where such a prerequisite is not necessary, and become
a superior choice. Without providing any background information about the datasets,
automatic clustering algorithms yield identical results to the conventional clustering
technique [7,20,22,69]. Automatic labeling of unlabeled data points in real-world datasets
has also been found to be feasible using this method, which is obviously difficult and
extremely difficult to accomplish traditionally.

Automatic clustering algorithms are more likely to find an optimum ideal solution than
local searching algorithms, which are affected by early originating regions. A generalized
optimization problem requires a linear and convex solution [7]. Additionally, nature-
inspired clustering algorithms are more adaptable to addressing clustering challenges
across sectors than traditional clustering approaches, which are generally a concern and
lack continuity [22]. The main goal of automatic clustering algorithms is to produce clusters
with lowered based on inter-distance and enhanced inter-cluster distance [7].

• Square error clustering:

Using a sum of the square error criterion functions, data points are clustered into a
set number of categories with the square error clustering technique. Differentiated by the
number of standard deviations, each data point from the stated group mean is included in
the information shown here. When the sum of the squared errors for the data points in a
cluster is zero, we may say that the points in the cluster are statistically very near to one
another (very close).

K-means clustering; the K-means clustering algorithm is often used to fix clustering
issues. This is an instance of unsupervised learning. Some benefits it offers are as follows: it
outperforms hierarchical clustering in terms of computing efficiency for very large variables.
If you choose a globular cluster with a small value for k, you will obtain denser clusters
than you would with hierarchical clustering. This algorithm’s main advantage is how
simple it is to use and understand the clustering results. The algorithm’s complexity is
O(K*n*d), making it very efficient from a computing standpoint [70].

Using this number, we may join the data point to the nearest cluster. When a new data
point is added to a cluster, a new mean is calculated using the items already distributed
among clusters, which raises the level of intra-cluster similarity. The data items are then
reassigned using the new mean. Repeat this process multiple times until stability is attained.
The goal of the K-Means method is to reduce the total squared error threshold [22,71,72].
The problem of the basic formulation of the number of clusters at the computation inception
is one of the key concerns with K-Means clustering algorithms. There is not a reliable,
all-encompassing strategy for determining how many clusters and how many partitions to
start with. According to reports, the K-means algorithm is particularly sensitive to the initial
centroid selection, which might lead to the production of a less-than-ideal solution [34].

• Miscellaneous clustering techniques:

Miscellaneous clustering technique includes time series mode seeking and streaming
clustering techniques.

Time series clustering: time series clustering, similar to stable data clustering, needs a
clustering method or technique to build clusters given a set of unordered items, and the
selection of the clustering algorithm relies on both kind of information provided and the
specific goal and purpose. Discrete-valued and real-valued data, uniform and non-uniform
sampling, univariate and multivariate data, and data series of equal and unequal length
are all various types of time series data. Before performing clustering procedures, non-
uniformly sampled data must be transformed into uniform data. This may be accomplished
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in several ways, from straightforward down sampling based on the roughest sampling
interval to a complex modeling and estimate strategy [73].

Streaming clustering: a data stream is a vast, continually arriving series of multidi-
mensional objects that is unlimited and quickly changing over time [74]. Since a data
stream is limitless, it cannot be kept in memory or on a disc and is thus constrained to
only do one pass over the data. Additionally, the order in which data arrives cannot be
controlled, and objects cannot be accessed at random. Due to these limitations, tradi-
tional clustering algorithms are unable to manage the clustering issues associated with
data streams [75], demanding the use of streaming clustering techniques. The number of
clusters and handling outliers are two of the three main issues [74] highlighted as being
unique to streaming clustering methods. Third, data streams are inherently unpredictable.
In order to account for the ever-evolving aspect of streaming content, clusters produced
using streaming classification techniques must be updated in real-time. A data stream is
unlimited, therefore assuming a set number of clusters will be rather constrained. The
cluster configuration is an ongoing process. Because both clusters and outliers change
over time, it is difficult to recognize them as quickly as an object is detected a data stream.
Other difficulties of streaming data that really are universal to data procedures and yet still
apply to broadcast clustering include the single-stage constraints discussed above, the low
computing time, which governs the fast response of the computation algorithm, and the
limited computation, which also allows us to work with essential summary data.

Mode seeking clustering algorithm: the value that appears the most frequently in data
collection is returned by the central tendency measure known as the mode. Both qualitative
and quantitative qualities can be used to define the mode, and more than one mode may
exist in a single data set. Clusters are produced using estimated density functions in
mode-seeking clustering algorithms [76,77]. These modes represent the probability density
functions’ local maxima. Associating data samples with the closest modes in mode-seeking
clustering results in the assignment of cluster labels [78]. Clusters are built automatically
in mode seeking clustering technique with the number of detected modes. Mode-seeking
clustering may be thought of as an agglomerative method; according to [79], every mode
defines one group of data points and a density function is approximate for the dataset
(every data point is used to start a new iteration of a mean shift algorithm). The density
gradient from each item is tracked to determine which mode it belongs to during the
clustering phase. It is said to be that a particular cluster is a place of those items that were
in the same mode. According to this method, the number of clusters and the number of
modes might be the same [79,80]. Both the mean shift process [79] and the K-NN mode
search procedure [81] were explored in [76], both of which make use of non-parametric
density estimations. The width parameter in each of the two methods affects how many
modes are included in the density estimate, with clustering being considered.

2.2.3. Mixture Resolving Algorithms

The assumption made by the mixture-based method, also known as the mixture
resolving algorithm, is that a group of observed objects originates from a combination
of examples from several probability clusters. In order to produce each observed item,
a probabilistic cluster is picked in accordance with the cluster’s probability. After that,
a sample is selected based on the selected cluster’s probability density function. The
data set is taken to be a combination of a certain number of distinct cluster groups that
were clustered in varied proportions. The mixture likelihood-based method of clustering
is model-based since it requires the pre-specification of each component’s observational
component density. To cluster samples from a population [82] noted that the statistical
model to be employed must be specified or understood beforehand. Due to the similarity
among model-based and mixture-based, simple regression concepts may be used to do
prediction evaluation and hypotheses development. The mixture likelihood-based strategy,
according to [82] is "probably the only clustering technique that is totally adequate from
the mathematical point of view." It assumes a well-specified mathematical model, explores
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it using well-known statistical techniques, and offers a test of the result’s significance. A
mixture-based method can readily determine the optimal number of clusters since it has
a solid probabilistic foundation. Thus, according to [83], several of the advantages of the
mixture model is that it successfully combines different data sets using different scientific
methods. However, the processing complexity is significant, and the assumptions made
about the distribution of the data are rather strong. Additionally, each cluster is seen as a
single simple distribution, which limits the formation of the cluster [84].

• Expectation maximization

In data-driven methods developed, the EM technique for estimation methods has been
frequently employed. EM is a statistical inference technique that guarantees the conditional
probability will converge [85]. According to the parameters of the probabilistic clusters,
objects are allocated to clusters in the expectation stage, and in the maximization stage,
a new grouping or feature is found that improves the projected probability. Given the
initial values drawn at random for the parameters of the probabilistic distribution, such
as through and until the metric aligns or the shift is negligible, the average, the standard
deviation, the E-step, and the M-step are repeated at regular intervals. The chance that each
item belongs to each distribution is determined during clustering, and the probabilistic
distribution parameter is changed to maximize the predicted likelihood of each cluster
object in the M-step. The EM method requires several calculations for each iteration. As a
result of this iterative calculation, the amount of data points and combination components
scaled linearly, limiting the EM algorithm’s applicability for large-scale applications [67,86].
The EM technique is straightforward since it does not need the setting of any factors that
might influence the optimization process [67].

3. Comparison of Partitional and Hierarchical Clustering Algorithm

We reviewed the techniques and compared them in Table 1. The partitional methods,
e.g., k-means, are generally simple, but they can only be used for certain kinds of data
(convex shape). However, the clusters they create are not very reliable. However, hierar-
chical approaches generate very accurate clusters despite their great complexity (O(n2))
similarly the complexity of the partitional algorithm is O(n(d + k)). Furthermore, there
is no global objective function for optimization in these approaches. Parameters such as
k-means are used as input in many partitioning and hierarchical clustering methods and
can thus impact the outcome. Results suffer if these parameters are poorly selected. Each
stand-alone technique is tailored to a distinct subset of information. That is why they are
so effective at handling targeted information. For some datasets, not even picking the best
clustering techniques with the right settings of parameters will do. The largest datasets that
contain an outlier sometimes yield poor results from even the most powerful clustering
approaches. A persistent difficulty in the field of data science is the development of a
clustering approach that reliably resolves all possible datasets and discovers findings with
little complexity.
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Table 1. Compression of some of partitional and hierarchical clustering algorithms.

Categories Algorithm/
Technique

Time
Complexity

Shape of
Clusters Dataset Size Noisy

Data
Type of
Dataset

High
Dimensionality Advantages Limitations

Hierarchical
based

CURE O(n 2log n) Arbitrary Large No Numerical Yes
In the first stages, it is not
important to determine
how many clusters will

be needed.
There is no need to provide

any input settings.
Simple to put into practice.

No room for
interpretation.

Extremely susceptible
to extremes.

Once instances are
assigned to a cluster,
that decision cannot

be revoked.

ROCK O(n2+nmmma+
n 2log n) Arbitrary Large Yes Categorical No

BIRCH O(n) Non-convex Large Yes Numerical No

Ward O(n) Non-convex Large and
small Yes Numerical No

Chameleon O(n2) Arbitrary Large Yes All types Yes

Partitional
based

K-means O(nki) Non-convex Large and
small No Numerical No Solid, expandable, and easy

to use.
Simple, and it does not

assume any prior
experience in the field.

Whenever the centroid is
recalculated, other

clusters form.

Challenging to forecast
the number of clusters.
Sensitivity to measure;

this means that
normalization or

standards will entirely
modify the results.

k-medoids O (n2kt) Non-convex Small Yes Categorical Yes

PAM O(k(n−k)2) Non-convex Small No Numerical No

K-MODES O(n) Non-convex Large No Categorical Yes

CLARA O(k(m+k)2+
k(n−k))

Non-convex Large No Numerical No
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4. Challenges Still Exist in the Field of Clustering Algorithms

Determining the a priori number of clusters is a significant obstacle in cluster anal-
ysis. This difficulty arises because of a scarcity of experience in the relevant field. It also
happens when there are several groups inside the dataset and those groups vary in size,
density, and form. Although many people have worked on this issue, it is still difficult
to solve. To address this issue, future research might investigate naturally-inspired algo-
rithms [68]. Beyond non-automatic clustering, it was hypothesized in [87] that automated
clustering problems may be solved with the use of approaches inspired by nature, such as
bacterium forage efficiency, fireflies’ improvement, and force of gravity learning algorithms.
In addition, the authors disclosed that only a small number of research ever considered
hybrid nature-inspired algorithms. Traditional methods and those inspired by nature can
be used to create cluster-based algorithms with improved efficiency and speed. Cluster-
ing algorithms that take cues from nature should be hybridized by combining similar
algorithms in an elegant and performance-enhancing method to achieve better results. In
addition, swarm intelligence-based clustering algorithms for tackling NP-hard issues in
computational biology have only recently begun to be investigated [87]. Many additional
unanswered questions about cluster analysis may be found in the scholarly literature, some
of them are addressed in the following section.

4.1. Computational Complexity

While effective, certain clustering methods may be too computationally intensive to
use on large-scale datasets with a high-dimensional feature map. The issue can be fixed by
boosting the output of computing resources using high-capacity GPUs [88]. Moreover, it is
possible that improved clustering algorithms can be designed using parallel computing to
make use of the advantages it offers. Clustering methods based on parallel computing tend
to be highly beneficial, but face the obstacle of complexity in implementation, as revealed
by two distinct research [88,89]. As an alternative to parallel processing, MapReduce-based
clustering techniques exist. Clustering techniques based on MapReduce are quicker and
more scalable. To improve scalability and performance, they can implement clustering
algorithms on GPU-based MapReduce frameworks.

4.2. Refinement of Clusters

In many cases, the clusters produced by a clustering operation need to be refined
further, either using the same clustering technique or with a different clustery process.
Objects that were incorrectly grouped due to ineffective similarity metrics may be relocated
to the cluster where they fit best thanks to this improvement. The divisive technique is
one type of clustering that uses both monothetic and polythetic approaches to the cluster
refining process. The earlier method relied on the use of a single property to divide a cluster,
whereas the latter method considered all available attributes. We viewed these methods
as evidence that other strategies can be developed to boost cluster quality. Concerning
the potential consequences of incorrectly categorizing things into clusters in potentially
life-threatening contexts, this refining problem emerges as required. Hybrids of such
algorithms may be considered for optimal execution of the refining work, which can
increase the applicability of metaheuristic algorithms.

4.3. Speed of Convergence

Oftentimes, the clusters that arise from a clustering operation need to be refined
further, either using the same clustering technique or with a different clustery approach.
The purpose of this improvement is to move items that were incorrectly grouped owing to
ineffective similarity metrics into the cluster where they belong. The divisive technique is
one type of clustering that takes a two-pronged approach to the refining process of clusters,
using both monothetic and polythetic means. The earlier type of cluster splitting relied
on the use of a single attribute, whereas the latter type used a combination of attributes.
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We viewed this as evidence that other methods can develop to enhance cluster quality.
The consequences of incorrectly grouping things into clusters can have fatal consequences,
making this refining issue a pressing one. In fact, hybrids of metaheuristic algorithms
may be considered for optimal execution of the refining job, which would increase the
application of such algorithms.

4.4. Data Dimensionality

Several techniques, including K-means, GMM clustering, maximum-margin cluster-
ing, and information-theoretic clustering, have trouble dealing with strong datasets. By
projecting the actual information into a fairly low domain, clustering on the characteristic
embedding, e.g., sparse code, can improve all of these problems [90].

4.5. Missing Values

During the process of collecting data from a wide variety of sources, including sensors,
digital devices, machines, and people, these sources produce significant volumes of data
in a very short period of time. However, collecting data is not always a simple operation,
and in certain cases it might result in values being absent from the data [91]. Incomplete or
missing data may obscure the true answers that lie under the surface. They are also capable
of hindering the algorithms’ overall performance.

4.6. Effectiveness and Scalability

Researchers in the field of big data clustering have a lot to learn about how to make it
more effective and scalable. Deep learning has been proposed as a method for overcoming
this difficulty. To further boost their efficiency, clustering algorithms might rely less on user-
dependent factors. This means that in the future, researchers may consider specific needs
for each area and build an algorithm that meets all of them. In addition, new clustering
algorithms can be developed in the future as a result of a study into the creation of remedies
for some of the fundamental difficulties of both automated and non-automatic clustering.
Further study can also lead to the development of more effective algorithms to handle
unexpected input without requiring a complete re-training.

4.7. Data Object Representation

It is also difficult for clustering algorithms to accurately describe data objects. In-
appropriate data object representation is a problem. Additionally, there is a disparity in
the representation of data items between domains. Data objects may be represented in a
number of different ways, with some being represented as feature vectors and others as
graphs with an associated concept of object similarity [9]. Distinctions in data object repre-
sentation between domains of use provide a fruitful field for study. Finding an effective
data representation in clustering operations is important since it improves the efficiency of
clustering algorithms. By highlighting these pockets of concentrated data, the clustering
technique may be made more robust and used on a larger scale. Locating sections of data
that can be compressed, regions that can remain in main memory without swapping, and
regions that can be ignored due to noise or lack of relevance to the results of a clustering
procedure are all helpful.

4.8. Evaluation Measures

Different clustering algorithms may be evaluated and compared using a variety of
parameters, including accuracy, algorithm stability, and dataset normalization [10]. Addi-
tionally, there is a requirement for the development of algorithmic techniques for comparing
various clustering strategies with respect to several validity indices, including internal,
stability, and biological indices [92]. Despite the fact that [93] highlighted that a single
algorithm would not fulfill all assessment metrics, beginning with one algorithmic solution
might lead to more hybridized or robust solutions.
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4.9. Data Streams

The clustering procedure is more difficult than clustering on static data because of
clustering’s unique nature. Several difficulties with clustering approaches on data streams
were identified by [93]. Methods of clustering should be robust enough to handle the
presence of outliers and other forms of noise. To aid in the study of trends in data streams,
clustering algorithms should have the ability to precisely recognize the change in context
and grouping of flowing data items. Clustering algorithms’ computing capabilities and
memory space optimization should also increase as the number of data streams generated
from various sources, such as social networks, grows. To further adapt current context-
based adaptive clustering algorithms and develop models for clustering dynamic data
streams, more study is needed.

4.10. Knowledge Extraction

Clustering also faces difficulties in extracting useful information from large datasets.
The rise in data creation and storage is to blame [22]. Terabytes and petabytes of data
provide a significant hurdle for the data analyst because of this issue. Knowledge extraction
from large datasets has limitations that can be solved with more research. Current methods,
such as distributed clustering and parallel evolutionary algorithms, need improvement. In
addition, future research can build novel clustering algorithms that can pick and decide
among single-objective and multi-objective optimizations.

5. Conclusions and Future Directions

Clustering has found widespread use in data mining and analysis across several disci-
plines, computer science, data science, statistics, pattern recognition, artificial intelligence,
and machine learning, and so on. The most basic issue in cluster analysis is determining
the number of clusters beforehand. Many clustering issues may be solved more effectively
if the right number of clusters is specified in advance. This is why automated clustering
methods are becoming the norm rather than the exception. To perform clustering without
needing any prior knowledge of data sets, automated clustering techniques were devel-
oped. They can also determine how many groups should be included in a noisy dataset.
This research provides a thorough and current overview of both classic and cutting-edge
clustering techniques. Both researchers and practitioners may learn from this study.

Furthermore, future research might examine the qualities of various clustering tech-
niques and how both maps efficiently tackle problems in other application fields, as well as
the uniqueness of the difficulties faced in those sectors. Furthermore, future research might
look at the use of newer or even hybrid clustering algorithms in a chosen subject based on
the numerous tendencies highlighted in this study. Researchers and professionals can use
the information in this study as a starting point for developing new, more effective, and
efficient clustering algorithms.
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